Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Abstract

We have performed H and KS band observations of the planetary system around HR 8799 using the new AO system at the Large Binocular Telescope and the PISCES Camera. The excellent instrument performance (Strehl ratios up to 80% in H band) enabled the detection of the innermost planet, HR 8799e, at H band for the first time. The H and KS magnitudes of HR 8799e are similar to those of planets c and d, with planet e being slightly brighter. Therefore, HR 8799e is likely slightly more massive than c and d. We also explored possible orbital configurations and their orbital stability. We confirm that the orbits of planets b, c and e are consistent with being circular and coplanar; planet d should have either an orbital eccentricity of about 0.1 or be non-coplanar with respect to b and c. Planet e can not be in circular and coplanar orbit in a 4:2:1 mean motion resonances with c and d, while coplanar and circular orbits are allowed for a 5:2 resonance. The analysis of dynamical stability shows that the system is highly unstable or chaotic when planetary masses of about 5 MJ for b and 7 MJ for the other planets are adopted. Significant regions of dynamical stability for timescales of tens of Myr are found when adopting planetary masses of about 3.5, 5, 5, and 5 MJ for HR 8799b, c, d, and e respectively. These masses are below the current estimates based on the stellar age (30 Myr) and theoretical models of substellar objects

Similar works

Full text

thumbnail-image

EDP Sciences OAI-PMH repository (1.2.0)

redirect
Last time updated on 10/04/2020

This paper was published in EDP Sciences OAI-PMH repository (1.2.0).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.