Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Numerical evidence of the double-Griffiths phase of the random quantum Ashkin-Teller chain

Abstract

The random quantum Ashkin-Teller chain is studied numerically by means of time-dependent Density-Matrix Renormalization Group. The critical lines are estimated as the location of the peaks of the integrated autocorrelation times, computed from spin-spin and polarization-polarization autocorrelation functions. Disorder fluctuations of magnetization and polarization are observed to be maximum on these critical lines. Entanglement entropy leads to the same phase diagram, though with larger finite-size effects. The decay of spin-spin and polarization-polarization autocorrelation functions provides numerical evidence of the existence of a double Griffiths phase when taking into account finite-size effects. The two associated dynamical exponents z increase rapidly as the critical lines are approached, in agreement with the recent conjecture of a divergence at the two transitions in the thermodynamic limit

Similar works

Full text

thumbnail-image

EDP Sciences OAI-PMH repository (1.2.0)

redirect
Last time updated on 10/04/2020

This paper was published in EDP Sciences OAI-PMH repository (1.2.0).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.