Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Vibrational entropy and the structural organization of proteins

Abstract

In this paper we analyze the vibrational spectra of a large ensemble of non-homologous protein structures by means of a novel tool, that we coin Hierarchical Network Model (HNM). Our coarse-grained scheme accounts for the intrinsic heterogeneity of force constants displayed by protein arrangements and also incorporates side chain degrees of freedom. Our analysis shows that vibrational entropy per unit residue correlates with the content of secondary structure. Furthermore, we assess the individual contribution to vibrational entropy of the novel features of our scheme as compared with the predictions of state-of-the-art network models. This analysis highlights the importance of properly accounting for the intrinsic hierarchy in force strengths typical of the different atomic bonds that build up and stabilize protein scaffolds. Finally, we discuss possible implications of our findings in the context of protein aggregation phenomena

Similar works

Full text

thumbnail-image

EDP Sciences OAI-PMH repository (1.2.0)

redirect
Last time updated on 10/04/2020

This paper was published in EDP Sciences OAI-PMH repository (1.2.0).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.