Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Conservation-Dissipation Formalism for soft matter physics: II. Application to non-isothermal nematic liquid crystals

Abstract

For most existing non-equilibrium theories, the modeling of non-isothermal processes is a hard task. Intrinsic difficulties involve the non-equilibrium temperature, the coexistence of conserved energy and dissipative entropy, etc. In this paper, by taking the non-isothermal flow of nematic liquid crystals as a typical example, we illustrate that thermodynamically consistent models in either vectorial or tensorial forms can be constructed within the framework of the Conservation-Dissipation Formalism (CDF). And the classical isothermal Ericksen-Leslie model and Qian-Sheng model are shown to be special cases of our new vectorial and tensorial models in the isothermal, incompressible and stationary limit. Most importantly, from the above examples, it is known that CDF can easily solve the issues relating with non-isothermal situations in a systematic way. The first and second laws of thermodynamics are satisfied simultaneously. The non-equilibrium temperature is defined self-consistently as a partial derivative of the entropy function. Relaxation-type constitutive relations are constructed, which give rise to classical linear constitutive relations, like Newton's law and Fourier's law, in stationary limits. Therefore, CDF is expected to have a broad scope of applications in soft matter physics, especially under complicated situations, such as non-isothermal, compressible and nanoscale systems

Similar works

Full text

thumbnail-image

EDP Sciences OAI-PMH repository (1.2.0)

redirect
Last time updated on 10/04/2020

This paper was published in EDP Sciences OAI-PMH repository (1.2.0).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.