Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Effect of the orientational relaxation on the collective motion of patterns formed by self-propelled particles

Abstract

We investigate the collective behavior of self-propelled particles (SPPs) undergoing competitive processes of pattern formation and rotational relaxation of their self-propulsion velocities. In full accordance with previous work, we observe transitions between different steady states of the SPPs caused by the intricate interplay among the involved effects of pattern formation, orientational order, and coupling between the SPP density and orientation fields. Based on rigorous analytical and numerical calculations, we prove that the rate of the orientational relaxation of the SPP velocity field is the main factor determining the steady states of the SPP system. Further, we determine the boundaries between domains in the parameter plane that delineate qualitatively different resting and moving states. In addition, we analytically calculate the collective velocity v⃗\vec{v} of the SPPs and show that it perfectly agrees with our numerical results. We quantitatively demonstrate that v⃗\vec{v} does not vanish upon approaching the transition boundary between the moving pattern and homogeneous steady states

Similar works

Full text

thumbnail-image

EDP Sciences OAI-PMH repository (1.2.0)

redirect
Last time updated on 10/04/2020

This paper was published in EDP Sciences OAI-PMH repository (1.2.0).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.