Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Fiat-Shamir: From Practice to Theory, Part II (NIZK and Correlation Intractability from Circular-Secure FHE)

Abstract

We construct non-interactive zero-knowledge (NIZK) arguments for NP\mathsf{NP} from any circular-secure fully homomorphic encryption (FHE) scheme. In particular, we obtain such NIZKs under a circular-secure variant of the learning with errors (LWE) problem while only assuming a standard (poly/negligible) level of security. Our construction can be modified to obtain NIZKs which are either: (1) statistically zero-knowledge arguments in the common random string model or (2) statistically sound proofs in the common reference string model. We obtain our result by constructing a new correlation-intractable hash family [Canetti, Goldreich, and Halevi, JACM~\u2704] for a large class of relations, which suffices to apply the Fiat-Shamir heuristic to specific 3-message proof systems that we call ``trapdoor Σ\Sigma-protocols.\u27\u27 In particular, assuming circular secure FHE, our hash function hh ensures that for any function ff of some a-priori bounded circuit size, it is hard to find an input xx such that h(x)=f(x)h(x)=f(x). This continues a recent line of works aiming to instantiate the Fiat-Shamir methodology via correlation intractability under progressively weaker and better-understood assumptions. Another consequence of our hash family construction is that, assuming circular-secure FHE, the classic quadratic residuosity protocol of [Goldwasser, Micali, and Rackoff, SICOMP~\u2789] is not zero knowledge when repeated in parallel. We also show that, under the plain LWE assumption (without circularity), our hash family is a universal correlation intractable family for general relations, in the following sense: If there exists any hash family of some description size that is correlation-intractable for general (even inefficient) relations, then our specific construction (with a comparable size) is correlation-intractable for general (efficiently verifiable) relations

Similar works

This paper was published in Cryptology ePrint Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.