Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Asymptotic complexities of discrete logarithm algorithms in pairing-relevant finite fields

Abstract

We study the discrete logarithm problem at the boundary case between small and medium characteristic finite fields, which is precisely the area where finite fields used in pairing-based cryptosystems live. In order to evaluate the security of pairing-based protocols, we thoroughly analyze the complexity of all the algorithms that coexist at this boundary case: the Quasi-Polynomial algorithms, the Number Field Sieve and its many variants, and the Function Field Sieve. We adapt the latter to the particular case where the extension degree is composite, and show how to lower the complexity by working in a shifted function field. All this study finally allows us to give precise values for the characteristic asymptotically achieving the highest security level for pairings. Surprisingly enough, there exist special characteristics that are as secure as general ones

Similar works

This paper was published in Cryptology ePrint Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.