Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

An Efficient CRT-based Bit-parallel Multiplier for Special Pentanomials

Abstract

The Chinese remainder theorem (CRT)-based multiplier is a new type of hybrid bit-parallel multiplier, which can achieve nearly the same time complexity compared with the fastest multiplier known to date with reduced space complexity. However, the current CRT-based multipliers are only applicable to trinomials. In this paper, we propose an efficient CRT-based bit-parallel multiplier for a special type of pentanomial xm+xmβˆ’k+xmβˆ’2k+xmβˆ’3k+1,5k<m≀7kx^m+x^{m-k}+x^{m-2k}+x^{m-3k}+1, 5k<m\leq 7k. Through transforming the non-constant part xm+xmβˆ’k+xmβˆ’2k+xmβˆ’3kx^m+x^{m-k}+x^{m-2k}+x^{m-3k} into a binomial, we can obtain relatively simpler quotient and remainder computations, which lead to faster implementation with reduced space complexity compared with classic quadratic multipliers. Moreover, for some mm, our proposal can achieve the same time delay as the fastest multipliers for irreducible Type II and Type C.1 pentanomials of the same degree, but the space complexities are reduced

Similar works

This paper was published in Cryptology ePrint Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.