Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Time-approximation trade-offs for inapproximable problems

Abstract

In this paper we focus on problems which do not admit a constant-factor approximation in polynomial time and explore how quickly their approximability improves as the allowed running time is gradually increased from polynomial to (sub-)exponential. We tackle a number of problems: For Min Independent Dominating Set, Max Induced Path, Forest and Tree, for any r(n), a simple, known scheme gives an approximation ratio of r in time roughly rn/r. We show that, for most values of r, if this running time could be significantly improved the ETH would fail. For Max Minimal Vertex Cover we give a nontrivial √r-approximation in time 2n/r. We match this with a similarly tight result. We also give a log r-approximation for Min ATSP in time 2n/r and an r-approximation for Max Grundy Coloring in time rn/r. Furthermore, we show that Min Set Cover exhibits a curious behavior in this superpolynomial setting: for any δ > 0 it admits an mδ-approximation, where m is the number of sets, in just quasi-polynomial time. We observe that if such ratios could be achieved in polynomial time, the ETH or the Projection Games Conjecture would fail. © Édouard Bonnet, Michael Lampis and Vangelis Th. Paschos; licensed under Creative Commons License CC-BY

Similar works

This paper was published in SZTAKI Publication Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.