Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Towards Optimal Synchronous Counting

Abstract

Consider a complete communication network of nn nodes, where the nodes receive a common clock pulse. We study the synchronous cc-counting problem: given any starting state and up to ff faulty nodes with arbitrary behaviour, the task is to eventually have all correct nodes counting modulo cc in agreement. Thus, we are considering algorithms that are self-stabilizing despite Byzantine failures. In this work, we give new algorithms for the synchronous counting problem that (1) are deterministic, (2) have linear stabilisation time in ff, (3) use a small number of states, and (4) achieve almost-optimal resilience. Prior algorithms either resort to randomisation, use a large number of states, or have poor resilience. In particular, we achieve an exponential improvement in the space complexity of deterministic algorithms, while still achieving linear stabilisation time and almost-linear resilience

Similar works

Full text

thumbnail-image

MPG.PuRe

redirect
Last time updated on 23/08/2016

This paper was published in MPG.PuRe.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.