Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Approximate quantum error correction for generalized amplitude-damping errors

Abstract

We present analytic estimates of the performances of various approximate quantum error-correction schemes for the generalized amplitude-damping (GAD) qubit channel. Specifically, we consider both stabilizer and nonadditive quantum codes. The performance of such error-correcting schemes is quantified by means of the entanglement fidelity as a function of the damping probability and the nonzero environmental temperature. The recovery scheme employed throughout our work applies, in principle, to arbitrary quantum codes and is the analog of the perfect Knill-Laflamme recovery scheme adapted to the approximate quantum error-correction framework for the GAD error model. We also analytically recover and/or clarify some previously known numerical results in the limiting case of vanishing temperature of the environment, the well-known traditional amplitude-damping channel. In addition, our study suggests that degenerate stabilizer codes and self-complementary nonadditive codes are especially suitable for the error correction of the GAD noise model. Finally, comparing the properly normalized entanglement fidelities of the best performant stabilizer and nonadditive codes characterized by the same length, we show that nonadditive codes outperform stabilizer codes not only in terms of encoded dimension but also in terms of entanglement fidelity

Similar works

Full text

thumbnail-image

MPG.PuRe

redirect
Last time updated on 02/07/2017

This paper was published in MPG.PuRe.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.