Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Synchronization and state estimation for discrete-time complex networks with distributed delays

Abstract

In this paper, a synchronization problem is investigated for an array of coupled complex discrete-time networks with the simultaneous presence of both the discrete and distributed time delays. The complex networks addressed which include neural and social networks as special cases are quite general. Rather than the commonly used Lipschitz-type function, a more general sector-like nonlinear function is employed to describe the nonlinearities existing in the network. The distributed infinite time delays in the discrete-time domain are first defined. By utilizing a novel Lyapunov-Krasovskii functional and the Kronecker product, it is shown that the addressed discrete-time complex network with distributed delays is synchronized if certain linear matrix inequalities (LMIs) are feasible. The state estimation problem is then studied for the same complex network, where the purpose is to design a state estimator to estimate the network states through available output measurements such that, for all admissible discrete and distributed delays, the dynamics of the estimation error is guaranteed to be globally asymptotically stable. Again, an LMI approach is developed for the state estimation problem. Two simulation examples are provided to show the usefulness of the proposed global synchronization and state estimation conditions. It is worth pointing out that our main results are valid even if the nominal subsystems within the network are unstable

Similar works

Full text

thumbnail-image

aCQUIRe

redirect
Last time updated on 20/10/2022

This paper was published in aCQUIRe.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.