Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Generation of Motion of Drops with Interfacial Contact

Abstract

A liquid drop moves on a solid surface if it is subjected to a gradient of wettability or temperature. However, the pinning defects on the surface manifested in terms of a wetting hysteresis, or first-order nonlinear friction, limit the motion in the sense that a critical size has to be exceeded for a drop to move. The effect of hysteresis can, however, be mitigated by an external vibration that can be either structured or stochastic, thereby creating a directed motion of the drop. Many of the well-known features of rectification, amplification, and switching that are generic to electronics can be engineered with such types of movements. A specific case of interest is the random coalescence of drops on a surface that gives rise to self-generated noise. This noise overcomes the pinning potential, thereby generating a random motion of the coalesced drops. Randomly moving coalesced drops themselves exhibit a directed diffusive flux when a boundary is present to eliminate them by absorption. With the presence of a bias, the coalesced drops execute a diffusive drift motion that can have useful applications in various water and thermal management technologies

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 12/02/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.