Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Explicit non-linear model predictive control for autonomous helicopters

Abstract

Trajectory tracking is a basic function required for autonomous helicopters, but it also poses challenges to control design due to the complexity of helicopter dynamics. This article introduces an explicit model predictive control (MPC) to solve this problem, which inherits the advantages of non-linear MPC but eliminates time-consuming online optimization. The explicit solution to the non-linear MPC problem is derived using Taylor expansion and exploiting the helicopter model. With the explicit MPC solution, the control signals can be calculated instantaneously to respond to the fast dynamics of helicopters and suppress disturbances immediately. On the other hand, the online optimization process can be removed from the MPC framework, which can accelerate the software development and simplify onboard hardware. Due to these advantages of the proposed method, the overall control framework has a low complexity and high reliability, and it is easy to deploy on small-scale helicopters. The proposed explicit non-linear MPC has been successfully validated in simulations and in actual flight tests using a Trex-250 small-scale helicopter

Similar works

Full text

thumbnail-image

Loughborough University Institutional Repository

redirect
Last time updated on 26/03/2020

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.