Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Expressions of climate perturbations in western Ugandan crater lake sediment records during the last 1000 yr

Abstract

Equatorial East Africa has a complex, regional patchwork of climate regimes, with multiple interacting drivers. Recent studies have focussed on large lakes and reveal signals that are smoothed in both space and time, and, whilst useful at a continental scale, are of less relevance when understanding short-term, abrupt or immediate impacts of climate and environmental changes. Smaller-scale studies have highlighted spatial complexity and regional heterogeneity of tropical palaeoenvironments in terms of responses to climatic forcing (e.g. the Little Ice Age [LIA]) and questions remain over the spatial extent and synchroneity of climatic changes seen in East African records. Sediment cores from paired crater lakes in western Uganda were examined to assess ecosystem response to long-term climate and environmental change as well as testing responses to multiple drivers using redundancy analysis. These archives provide annual to sub-decadal records of environmental change. The records from the two lakes demonstrate an individualistic response to external (e.g. climatic) drivers, however, some of the broader patterns observed across East Africa suggest that the lakes are indeed sensitive to climatic perturbations such as a dry Mediaeval Climate Anomaly (MCA; 1000–1200 AD) and a relatively drier climate during the main phase of the LIA (1500–1800 AD); though lake levels in western Uganda do fluctuate. The relationship of Ugandan lakes to regional climate drivers breaks down c. 1800 AD, when major changes in the ecosystems appear to be a response to sediment and nutrient influxes as a result of increasing cultural impacts within the lake catchments. The data highlight the complexity of individual lake response to climate forcing, indicating shifting drivers through time. This research also highlights the importance of using multi-lake studies within a landscape to allow for rigorous testing of climate reconstructions, forcing and ecosystem response

Similar works

Full text

thumbnail-image

Loughborough University Institutional Repository

redirect
Last time updated on 26/03/2020

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.