Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Using machine learning techniques to evaluate multicore soft error reliability

Abstract

Virtual platform frameworks have been extended to allow earlier soft error analysis of more realistic multicore systems (i.e., real software stacks, state-of-the-art ISAs). The high observability and simulation performance of underlying frameworks enable to generate and collect more error/failurerelated data, considering complex software stack configurations, in a reasonable time. When dealing with sizeable failure-related data sets obtained from multiple fault campaigns, it is essential to filter out parameters (i.e., features) without a direct relationship with the system soft error analysis. In this regard, this paper proposes the use of supervised and unsupervised machine learning techniques, aiming to eliminate non-relevant information as well as identify the correlation between fault injection results and application and platform characteristics. This novel approach provides engineers with appropriate means that able are able to investigate new and more efficient fault mitigation techniques. The underlying approach is validated with an extensive data set gathered from more than 1.2 million fault injections, comprising several benchmarks, a Linux OS and parallelization libraries (e.g., MPI, OpenMP), as well as through a realistic automotive case study

Similar works

Full text

thumbnail-image

Loughborough University Institutional Repository

redirect
Last time updated on 26/03/2020

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.