Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Optimal Participation of Power Generating Companies in a Deregulated Electricity Market

Abstract

The function of an electric utility is to make stable electric power available to consumers in an efficient manner. This would include power generation, transmission, distribution and retail sales. Since the early nineties however, many utilities have had to change from the vertically integrated structure to a deregulated system where the services were unbundled due to a rapid demand growth and need for better economic benefits. With the unbundling of services came competition which pushed innovation and led to the improvement of efficiency. In a deregulated power system, power generators submit offers to sell energy and operating reserve in the electricity market. The market can be described more as oligopolistic with a System Operator in-charge of the power grid, matching the offers to supply with the bid in demands to determine the market clearing price for each interval. This price is what is paid to all generators. Energy is sold in the day-ahead market where offers are submitted hours prior to when it is needed. The spot energy market caters to unforeseen rise in load demand and thus commands a higher price for electrical energy than the day-ahead market. A generating company can improve its profit by using an appropriate bidding strategy. This improvement is affected by the nature of bids from competitors and uncertainty in demand. In a sealed bid auction, bids are submitted simultaneously within a timeframe and are confidential, thus a generator has no information on rivals’ bids. There have been studies on methods used by generators to build optimal offers considering competition. However, many of these studies base estimations of rivals’ behaviour on analysis with sufficient bidding history data from the market. Historical data on bidding behaviour may not be readily available in practical systems. The work reported in this thesis explores ways a generator can make security-constrained offers in different markets considering incomplete market information. It also incorporates possible uncertainty in load forecasts. The research methodology used in this thesis is based on forecasting and optimization. Forecasts of market clearing price for each market interval are calculated and used in the objective function of profit maximization to get maximum benefit at the interval. Making these forecasts includes competition into the bid process. Results show that with information on historical data available, a generator can make adequate short-term analysis on market behaviour and thus optimize its benefits for the period. This thesis provides new insights into power generators’ approach in making optimal bids to maximize market benefits

Similar works

Full text

thumbnail-image

eCommons@USASK

redirect
Last time updated on 04/11/2018

This paper was published in eCommons@USASK.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.