Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Vibration attenuation by mass redistribution

Abstract

A nontraditional approach for active structural vibration attenuation was proposed using mass redistribution. The focus was on pendulum structures where the objective was to examine the effectiveness of mass reconfiguration along or within a structure to attenuate its vibrational energy. The mechanics associated with a translating mass along a rotating structure give rise to a Coriolis inertia force which either opposes or increases angular oscillations, thereby producing positive or negative damping, respectively. A strategy of cycling the mass to maximize attenuation and minimize amplification required the mass be moved at twice the frequency of the structural vibrations and be properly coordinated with the angular oscillations. The desired coordination involved moving the mass away from the pivot as the pendulum nears its vertical position and moving the mass towards the pivot when the pendulum nears its maximum angular excursion. System mass reconfiguration was analyzed by studying various mass displacement profiles including sinusoidal, piece-wise constant velocity and modified proportional and derivative action patterns. These strategies were optimized for various time intervals to maximize the rate of energy attenuation or minimize the final energy state. For small amplitude oscillations with sinusoidal mass motion, the dynamic behavior was modeled by Mathieu-Hill equations to explain the beating phenomenon that occurred when the frequency of the mass motion remained constant. Several control systems were designed to generate aforementioned mass reconfiguration profiles. The methodologies included human operator, modified proportional and derivative action, knowledge or rule based and artificial neural network controllers. The human operator system improved with experience and was the most effective. Other systems depended on the chosen parameterization or the implementation of self-adjusting parameters. Several unique tools were developed during the course of this research, as referenced herein

Similar works

Full text

thumbnail-image

eCommons@USASK

redirect
Last time updated on 04/11/2018

This paper was published in eCommons@USASK.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.