Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Constrained field-oriented control of permanent magnet synchronous machine with field-weakening utilizing a reference governor

Abstract

This paper presents a complete solution for constrained control of a permanent magnet synchronous machine. It utilizes field-oriented control with proportional-integral current controllers tuned to obtain a fast transient response and zero steady-state error. To ensure constraint satisfaction in the steady state, a novel field-weakening algorithm which is robust to flux linkage uncertainty is introduced. Field weakening problem is formulated as an optimization problem which is solved online using projected fast gradient method. To ensure constraint satisfaction during current transients, an additional device called current reference governor is added to the existing control loops. The constraint satisfaction is achieved by altering the reference signal. The reference governor is formulated as a simple optimization problem whose objective is to minimize the difference between the true reference and a modified one. The proposed method is implemented on Texas instruments F28343 200 MHz microcontroller and experimentally verified on a surface mounted permanent magnet synchronous machine

Similar works

Full text

thumbnail-image

Hrčak - Portal of scientific journals of Croatia

redirect
Last time updated on 09/07/2019

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.