Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Performance Evaluation of Novel Rare Earth Free Magnets Based Motors for Electric Vehicle Applications

Abstract

Electrical Vehicles (EVs) are regarded as an effective solution in a world where environmental protection along with energy crises is gaining higher attention. Permanent Magnet Synchronous Machines (PMSMs) are considered significant competitors for EVs amongst the other varied motor drives. Owing to their higher efficiency, higher output power to volume ratio, and higher torque to current ratio, they are regarded as a feasible option in several sorts of applications like wind turbines, along with EVs. For higher-performance applications, Permanent Magnet (PM) motors with Rare-Earth (RE) magnets are pondered as one of the best candidates. Conversely, replacing the Rare-Earth (Neodymium-iron-boron) in EVs with lesser or even no RE alternatives is the most critical concern in PM owing to their limited along with the unstable supply of RE elements. Therefore, to eliminate the usage of RE magnets as well as to identify the finest alternative materials, which assure lower cost along with mass production in manufacturing industries, various permanent magnetic materials are examined here with different PMSM designs for EVs applications. Manganese Aluminide (MnAl), Ferrite, Tetrataenite (L10FeNi), Iron Nitride (Fe16N2) and Nanocomposite magnetic materials are the varied magnetic materials utilized for evaluation. For varied magnetic materials, the simulation outcomes are obtained regarding the variations in cogging torque, average torque, efficiency, along with magnet mass. On analogizing RE with various magnetic materials, it was established that a higher performance was attained by replacing RE magnets with substitute magnetic material; in addition, it also proves to be highly effective. It is observed that although their electromagnetic performance of the various materials is similar, iron nitrade has an excellent demagnetization withstand capability. Finally, in contrast to the interior V type with rare earth magnets, iron nitrade and MnAl magnet machine can attain better torque development with high efficiency

Similar works

Full text

thumbnail-image

Hrčak - Portal of scientific journals of Croatia

redirect
Last time updated on 30/09/2023

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.