Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Event-driven optimal feedback control for multiantenna beamforming

Abstract

Transmit beamforming is a simple multiantenna technique for increasing throughput and the transmission range of a wireless communication system. The required feedback of channel state information (CSI) can potentially result in excessive overhead especially for high mobility or many antennas. This work concerns efficient feedback for transmit beamforming and establishes a new approach of controlling feedback for maximizing throughput under a constraint on the average feedback rate. The feedback controller using a stationary policy turns CSI feedback on/off according to the system state that comprises the channel state and transmit beamformer. Assuming channel isotropy and Markovity, the controller's state reduces to two scalars. This allows the optimal control policy to be efficiently computed using dynamic programming. Consider the unquantized feedback channel free of error, where each feedback instant pays a fixed price. The corresponding optimal feedback control policy is proved to be of the threshold type. This result holds regardless of whether the controller's state space is discretized or continuous. Under the threshold-type policy, feedback is performed whenever a state variable indicating the accuracy of transmit CSI is below a threshold, which varies with channel power. The practical quantized feedback channel is also considered. The optimal policy for quantized feedback is proved to be also of the threshold type. The effect of CSI quantization is shown to be equivalent to an increment on the feedback price. Moreover, the increment is upper bounded by the expected logarithm of one minus the quantization error. Finally, simulation shows that feedback control increases throughput of the conventional periodic feedback by up to 0.5 bit/s/Hz without requiring additional bandwidth or antennas. © 2010 IEEE.link_to_subscribed_fulltex

Similar works

Full text

thumbnail-image

HKU Scholars Hub

redirect
Last time updated on 01/06/2016

This paper was published in HKU Scholars Hub.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.