Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Theoretical framework for quantum networks

Abstract

We present a framework to treat quantum networks and all possible transformations thereof, including as special cases all possible manipulations of quantum states, measurements, and channels, such as, e.g., cloning, discrimination, estimation, and tomography. Our framework is based on the concepts of quantum comb-which describes all transformations achievable by a given quantum network-and link product-the operation of connecting two quantum networks. Quantum networks are treated both from a constructive point of view-based on connections of elementary circuits-and from an axiomatic one-based on a hierarchy of admissible quantum maps. In the axiomatic context a fundamental property is shown, which we call universality of quantum memory channels: any admissible transformation of quantum networks can be realized by a suitable sequence of memory channels. The open problem whether this property fails for some nonquantum theory, e.g., for no-signaling boxes, is posed. © 2009 The American Physical Society.Link_to_subscribed_fulltex

Similar works

Full text

thumbnail-image

HKU Scholars Hub

redirect
Last time updated on 01/06/2016

This paper was published in HKU Scholars Hub.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.