Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Trade-offs between speed and processor in hard-deadline scheduling

Abstract

This paper revisits the problem of on-line scheduling of sequential jobs with hard deadlines in a preemptive, multiprocessor setting. An on-line scheduling algorithm is said to be optimal if it can schedule any set of jobs to meet their deadlines whenever it is feasible in the off-line sense. It is known that the earliest-deadline-first strategy (EDF) is optimal in a one-processor setting, and there is no optimal on-line algorithm in an m-processor setting where m≥2. Recent work however reveals that if the on-line algorithm is given faster processors, EDF is actually optimal for all m (e.g., when m = 2, it suffices to use processors 1.5 times as fast). This paper initiates the study of the trade-off between increasing the speed and using more processors in deriving optimal on-line scheduling algorithms. Several upper bound and lower bound results are presented. For example, the speed requirement of EDF can be reduced to 2-1+p/m+p when it is given p≥0 extra processors. The main result is a new on-line algorithm which demands less speedy processors so as to attain optimality (e.g., when m = 2, the speed requirement is 1 1/3) and admits a better speed-processor trade-off than EDF (e.g., when m = 2 and p = 1, the speed requirement is 1.2). In general, no optimal algorithm exists when the speed factor is less than 1/(2√2+p/m-2).published_or_final_versio

Similar works

This paper was published in HKU Scholars Hub.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.