Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Compositional synthesis of temporal fault trees from state machines

Abstract

Dependability analysis of a dynamic system which is embedded with several complex interrelated components raises two main problems. First, it is difficult to represent in a single coherent and complete picture how the system and its constituent parts behave in conditions of failure. Second, the analysis can be unmanageable due to a considerable number of failure events, which increases with the number of components involved. To remedy this problem, in this paper we outline an analysis approach that converts failure behavioural models (state machines) to temporal fault trees (TFTs), which can then be analysed using Pandora -- a recent technique for introducing temporal logic to fault trees. The approach is compositional and potentially more scalable, as it relies on the synthesis of large system TFTs from smaller component TFTs. We show, by using a Generic Triple Redundant (GTR) system, how the approach enables a more accurate and full analysis of an increasingly complex system

Similar works

This paper was published in Repository@Hull - Worktribe.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.