Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Learning Robot Gait Stability using Neural Networks as Sensory Feedback Function for Central Pattern Generators

Abstract

In this paper we present a framework to learn a model-free feedback controller for locomotion and balance control of a compliant quadruped robot walking on rough terrain. Having designed an open-loop gait encoded in a Central Pattern Generator (CPG), we use a neural network to repre- sent sensory feedback inside the CPG dynamics. This neural network accepts sensory inputs from a gyroscope or a camera, and its weights are learned using Particle Swarm Optimization (unsupervised learning). We show with a simulated compliant quadruped robot that our controller can perform significantly better than the open-loop one on slopes and randomized height maps

Similar works

Full text

thumbnail-image

Infoscience - École polytechnique fédérale de Lausanne

redirect
Last time updated on 09/02/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.