Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Optimal Selection of Adaptive Streaming Representations

Abstract

Adaptive streaming addresses the increasing and heterogenous demand of multimedia content over the Internet by offering several encoded versions for each video sequence. Each version (or representation) has a different resolution and bit rate, aimed at a specific set of users, like TV or mobile phone clients. While most existing works on adaptive streaming deal with effective playout-control strategies at the client side, we take in this paper a providers’ perspective and propose solutions to improve user satisfaction by optimizing the encoding rates of the video sequences. We formulate an integer linear program that maximizes users’ average satisfaction, taking into account the network dynamics, the video content information, and the user population characteristics. The solution of the optimization is a set of encoding parameters that permit to create different streams to robustly satisfy users’ requests over time. We simulate multiple adaptive streaming sessions characterized by realistic network connections models, where the proposed solution outperforms commonly used vendor recommendations, in terms of user satisfaction but also in terms of fairness and outage probability. The simulation results further show that video content information as well as network constraints and users’ statistics play a crucial role in selecting proper encoding parameters to provide fairness a mong users and to reduce network resource usage. We finally propose a few practical guidelines that can be used to choose the encoding parameters based on the user base characteristics, the network capacity and the type of video content

Similar works

Full text

thumbnail-image

Infoscience - École polytechnique fédérale de Lausanne

redirect
Last time updated on 09/02/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.