Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

TSPC Flip-Flop Circuit Design with Three-Independent-Gate Silicon Nanowire FETs

Abstract

True Single-Phase Clock (TSPC) Flip-Flops, based on dynamic logic implementation, are area-saving and high-speed compared to standard static flip-flops. Furthermore, logic gates can be embedded into TSPC flip-flops which significantly improves performance. As a promising approach to keep the pace of Moore's Law, functionality-enhanced devices with multiple independent gates have drown many recent interests. In particular, Three-Independent-Gate Silicon Nanowire FETs (TIG SiNWFETs) can realize the functionality of two serial transistors in a single device. Therefore, they open new opportunities to compact designs in both arithmetic and control circuits. In this paper, we propose TSPC flip-flop implementation with asynchronous set and reset using the compactness of TIG SiNWFET. Electrical simulations show that TIG SiNWFET-based TSPC flip-flop improves nearly 20%, 30% and 7% in area, delay and leakage power respectively as compared to its LSTP FinFET counterpart at 22nm

Similar works

Full text

thumbnail-image

Infoscience - École polytechnique fédérale de Lausanne

redirect
Last time updated on 09/02/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.