Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field

Abstract

In this work we show that the rate-dependent hysteresis seen in current-voltage scans of CH3NH3PbI3 perovskite solar cells is related to a slow field-induced process that tends to cancel the electric field in the device at each applied bias voltage. It is attributed to the build-up of space charge close to the contacts, independent of illumination and most likely due to ionic displacement, which is enhanced when the device undergoes aging. This process can also lead to a reduction of the open-circuit voltage or the steady-state photocurrent and does not directly correlate with the development of the hysteresis if it is measured at a fixed voltage sweep rate

Similar works

Full text

thumbnail-image

Infoscience - École polytechnique fédérale de Lausanne

redirect
Last time updated on 09/02/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.