Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

The Chaining Lemma and Its Application

Abstract

We present a new information-theoretic result which we call the Chaining Lemma. It considers a so-called "chain" of random variables, defined by a source distribution X-(0) with high min-entropy and a number (say, t in total) of arbitrary functions (T-1,...,T-t) which are applied in succession to that source to generate the chain X-(0) (sic) X-(1) (sic) X-(2)...(sic) X-(t). Intuitively, the Chaining Lemma guarantees that, if the chain is not too long, then either (i) the entire chain is "highly random", in that every variable has high min-entropy; or (ii) it is possible to find a point j (1 <= j <= t) in the chain such that, conditioned on the end of the chain i.e. X-(j) (sic) X(j+1)...(sic) X-(t), the preceding part X-(0) (sic) X-(1)...(sic) X-(j) remains highly random. We think this is an interesting information-theoretic result which is intuitive but nevertheless requires rigorous case-analysis to prove. We believe that the above lemma will find applications in cryptography. We give an example of this, namely we show an application of the lemma to protect essentially any cryptographic scheme against memorytampering attacks. We allow several tampering requests, the tampering functions can be arbitrary, however, they must be chosen from a bounded size set of functions that is fixed a priori

Similar works

Full text

thumbnail-image

Infoscience - École polytechnique fédérale de Lausanne

redirect
Last time updated on 09/02/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.