Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

A Fusion Scheme of Local Manifold Learning Methods

Abstract

Spectral analysis‐based dimensionality reduction algorithms, especially the local manifold learning methods, have become popular recently because their optimizations do not involve local minima and scale well to large, high‐dimensional data sets. Despite their attractive properties, these algorithms are developed based on different geometric intuitions, and only partial information from the true geometric structure of the underlying manifold is learned by each method. In order to discover the underlying manifold structure more faithfully, we introduce a novel method to fuse the geometric information learned from different local manifold learning algorithms in this chapter. First, we employ local tangent coordinates to compute the local objects from different local algorithms. Then, we utilize the truncation function from differential manifold to connect the local objects with a global functional and finally develop an alternating optimization‐based algorithm to discover the low‐dimensional embedding. Experiments on synthetic as well as real data sets demonstrate the effectiveness of our proposed method

Similar works

This paper was published in IntechOpen.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.