Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

MRI Data Processing Acceleration on GPU

Abstract

This BSc Thesis was performed during a study stay at the Universita della Svizzera italiana, Swiss. The identification of trajectories of neuron fibres within the human brain is of great importance in many medical applications as the neural diagnostics, neuronavigation, treatment of epilepsy, surgical removal of tumors and etc. By using diffusion MRI-data as input, and by employing Monte-Carlo like methods, possible trajectories are generated and the most likely ones can be visualized. These can serve as input for advanced medical diagnosis and treatments. Due to the huge amount of data to be analyzed and many iterations, this is a time consuming process. For the purposes such as statistical analysis and comparsion over several datasets or several patients, computational time requirements are enourmous. Faster diagnosis can improve routine throughput and provide earlier treatment of illness. At this time, there exists only a very few implementations of neural tractography sof tware. For probabilistic neural tractography is the list of software even thiner. Today's implementations using standard serial CPU execution suffer from high time consumption. The goal is to provide an efficient implementation which makes use of GPGPUs and exploits parallelism in the method. For the GPU implementation, a comparsion of CUDA and OpenCL technologies will be provided, using the more suitable one

Similar works

Full text

thumbnail-image

National Repository of Grey Literature

redirect
Last time updated on 10/08/2016

This paper was published in National Repository of Grey Literature.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.