Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

DYNAMIC MEASUREMENT OF THREE-DIMENSIONAL MOTION FROM SINGLE-PERSPECTIVE TWO-DIMENSIONAL RADIOGRAPHIC PROJECTIONS

Abstract

The digital evolution of the x-ray imaging modality has spurred the development of numerous clinical and research tools. This work focuses on the design, development, and validation of dynamic radiographic imaging and registration techniques to address two distinct medical applications: tracking during image-guided interventions, and the measurement of musculoskeletal joint kinematics. Fluoroscopy is widely employed to provide intra-procedural image-guidance. However, its planar images provide limited information about the location of surgical tools and targets in three-dimensional space. To address this limitation, registration techniques, which extract three-dimensional tracking and image-guidance information from planar images, were developed and validated in vitro. The ability to accurately measure joint kinematics in vivo is an important tool in studying both normal joint function and pathologies associated with injury and disease, however it still remains a clinical challenge. A technique to measure joint kinematics from single-perspective x-ray projections was developed and validated in vitro, using clinically available radiography equipmen

Similar works

This paper was published in Scholarship@Western.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.