Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Mesh parameterization by minimizing the synthesized distortion metric with the coefficient-optimizing algorithm

Abstract

The parameterization of a 3D mesh into a planar domain requires a distortion metric and a minimizing process. Most previous work has sought to minimize the average area distortion, the average angle distortion, or a combination of these. Typical distortion metrics can reflect the overall performance of parameterizations but discount high local deformations. This affects the performance of postprocessing operations such as uniform remeshing and texture mapping. This paper introduces a new metric that synthesizes the average distortions and the variances of both the area deformations and the angle deformations over an entire mesh. Experiments show that, when compared with previous work, the use of synthesized distortion metric performs satisfactorily in terms of both the average area deformation and the average angle deformation; furthermore, the area and angle deformations are distributed more uniformly. This paper also develops a new iterative process for minimizing the synthesized distortion, the coefficient-optimizing algorithm. At each iteration, rather than updating the positions immediately after the local optimization, the coefficient-optimizing algorithm first update the coefficients for the linear convex combination and then globally updates the positions by solving the Laplace system. The high performance of the coefficient-optimizing algorithm has been demonstrated in many experiments.Department of Computin

Similar works

Full text

thumbnail-image

The Hong Kong Polytechnic University Pao Yue-kong Library

redirect
Last time updated on 10/02/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.