Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Model Based, Direct Flux Vector Control of Permanent Magnet Synchronous Motor Drives

Abstract

This paper proposes a direct flux vector control strategy with no need for regulators tuning, suitable for permanent-magnet (PM) synchronous machine drives. The controller operates in stator flux coordinates and calculates the inverter reference voltages in a model-based fashion, taking advantage of a novel equation for the explicit evaluation of the torque angle error. The inverter current and voltage limits are exploited in a parameter-independent way. The method segregates the machine parameters into a single block, to make it very easy to switch from one machine to another. Experimental results are reported for a PM-assisted synchronous reluctance motor drive example, characterized by significant saturation and cross-saturation. State-of-the-art control techniques such as current vector control and non-model-based direct flux vector control are also considered, for the sake of comparison, in simulations and experiments

Similar works

Full text

thumbnail-image

PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

redirect
Last time updated on 30/10/2019

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.