Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Power Management Circuits for Front-End ASICs Employed in High Energy Physics Applications

Abstract

The instrumentation of radiation detectors for high energy physics calls for the development of very low-noise application-specific integrated-circuits and demanding system-level design strategies, with a particular focus on the minimisation of inter-ference noise from power anagement circuitry. On the other hand, the aggressive pixelisation of sensors and associated front-end electronics, and the high radiation exposure at the innermost tracking and vertex detectors, requires radiation-aware design and radiation-tolerant deep sub-micron CMOS technologies. This thesis explores circuit design techniques towards radiation tolerant power management integrated circuits, targeting applications on particle detectors and monitoring of accelerator-based experiments, aerospace and nuclear applications. It addresses advantages and caveats of commonly used radiation-hard layout techniques, which often employ Enclosed Layout or H-shaped transistors, in respect to the use of linear transistors. Radiation tolerant designs for bandgap circuits are discussed, and two different topologies were explored. A low quiescent current bandgap for sub-1 V CMOS circuits is proposed, where the use of diode-connected MOSFETs in weak-inversion is explored in order to increase its radiation tolerance. An any-load stable LDO architecture is proposed, and three versions of the design using different layout techniques were implemented and characterised. In addition, a switched DC-DC Buck converter is also studied. For reasons concerning testability and silicon area, the controller of the Buck converter is on-chip, while the inductance and the power transistors are left on-board. A prototype test chip with power management IP blocks was fabricated, using a TSMC 65 nm CMOS technology. The chip features Linear, ELT and H-shape LDO designs, bandgap circuits and a Buck DC-DC converter. We discuss the design, layout and test results of the prototype. The specifications in terms of voltage range and output current capability are based on the requirements set for the integrated on-detector electronics of the new CGEM-IT tracker for the BESIII detector. The thesis discusses the fundamental aspects of the proposed on-detector electronics and provides an in-depth depiction of the front-end design for the readout ASIC

Similar works

Full text

thumbnail-image

PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

redirect
Last time updated on 30/10/2019

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.