Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Vascular Complexity Evaluation Using a Skeletonization Approach and 3D LED-Based Photoacoustic Images

Abstract

Vasculature analysis is a fundamental aspect in the diagnosis, treatment, outcome evaluation and follow-up of several diseases. The quantitative characterization of the vascular network can be a powerful means for earlier pathologies revealing and for their monitoring. For this reason, non-invasive and quantitative methods for the evaluation of blood vessels complexity is a very important issue. Many imaging techniques can be used for visualizing blood vessels, but many modalities are limited by high costs, the need of exogenous contrast agents, the use of ionizing radiation, a very limited acquisition depth, and/or long acquisition times. Photoacoustic imaging has recently been the focus of much research and is now emerging in clinical applications. This imaging modality combines the qualities of good contrast and the spectral specificity of optical imaging and the high penetration depth and the spatial resolution of acoustic imaging. The optical absorption properties of blood also make it an endogenous contrast agent, allowing a completely non-invasive visualization of blood vessels. Moreover, more recent LED-based photoacoustic imaging systems are more affordable, safe and portable when compared to a laser-based systems. In this chapter we will confront the issue of vessel extraction techniques and how quantitative vascular parameters can be computed on 3D LED-based photoacoustic images using an in vitro vessel phantom model

Similar works

Full text

thumbnail-image

PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

redirect
Last time updated on 15/07/2022

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.