Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Minimum expected distortion in Gaussian layered broadcast coding with successive reinement

Abstract

A transmitter without channel state information (CSI) wishes to send a delay-limited Gaussian source over a slowly fading channel. The source Is coded in superimposed layers, with each layer successively refining the description in the previous one. The receiver decodes the layers that arc supported by the channel realization and reconstructs the source up to a distortion. In the limit of a continuum of infinite layers, the optimal power distribution thai minimizes the expected distortion is given by the solution to a set of linear differential equations in terms of the density of the fading distribution. In the optimal power distribution, as SNR increases, the allocation over the higher layers remains unchanged; rather the extra power is allocated towards the lower layers. On the other hand, as the bandwidth ratio b (channel uses per source symbol) tends to zero, the power distribution that minimizes expected distortion converges to the power distribution that maximizes expected capacity. While expected distortion can be improved by acquiring CSI at the transmitter (CSIT) or by increasing diversity from the realization of independent fading paths, at high SNR the performance benefit from diversity exceeds that from CSIT, especially when b is large. ©2007 IEEE

Similar works

Full text

thumbnail-image

Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia

redirect
Last time updated on 26/05/2020

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.