Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Microscopically implicit-macroscopically explicit schemes for the BGK equation

Abstract

In this work a new class of numerical methods for the BGK model of kinetic equations is introduced. The schemes proposed are implicit with respect to the distribution function, while the macroscopic moments are evolved explicitly. In this fashion, the stability condi- tion on the time step coincides with a macroscopic CFL, evaluated using estimated values for the macroscopic velocity and sound speed. Thus the stability restriction does not depend on the relaxation time and it does not depend on the microscopic velocity of ener- getic particles either. With the technique proposed here, the updating of the distribution function requires the solution of a linear system of equations, even though the BGK model is highly non linear. Thus the proposed schemes are particularly effective for high or moderate Mach numbers, where the macroscopic CFL condition is comparable to accuracy requirements. We show results for schemes of order 1 and 2, and the generalization to higher order is sketched

Similar works

Full text

thumbnail-image

Archivio della ricerca- Università di Roma La Sapienza

redirect
Last time updated on 08/07/2019

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.