Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Decentralized Maximum Likelihood Estimation for Sensor Networks Composed of Nonlinearly Coupled Dynamical Systems

Abstract

In this paper, we propose a decentralized sensor network scheme capable to reach a globally optimum maximum-likelihood (ML) estimate through self-synchronization of nonlinearly coupled dynamical systems. Each node of the network is composed of a sensor and a first-order dynamical system initialized with the local measurements. Nearby nodes interact with each other exchanging their state value, and the final estimate is associated to the state derivative of each dynamical system. We derive the conditions on the coupling mechanism guaranteeing that, if the network observes one common phenomenon, each node converges to the globally optimal ML estimate. We prove that the synchronized state is globally asymptotically stable if the coupling strength exceeds a given threshold. Acting on a single parameter, the coupling strength, we show how, in the case of nonlinear coupling, the network behavior can switch from a global consensus system to a spatial clustering system. Finally, we show the effect of the network topology on the scalability properties of the network, and we validate our theoretical findings with simulation results

Similar works

Full text

thumbnail-image

Archivio della ricerca- Università di Roma La Sapienza

redirect
Last time updated on 12/11/2016

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.