Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Sketching as a Tool for Efficient Networked Systems

Abstract

Today, computer systems need to cope with the explosive growth of data in the world. For instance, in data-center networks, monitoring systems are used to measure traffic statistics at high speed; and in financial technology companies, distributed processing systems are deployed to support graph analytics. To fulfill the requirements of handling such large datasets, we build efficient networked systems in a distributed manner most of the time. Ideally, we expect the systems to meet service-level objectives (SLOs) using the least amount of resource. However, existing systems constructed with conventional in-memory algorithms face the following challenges: (1) excessive resource requirements (e.g., CPU, ASIC, and memory) with high cost; (2) infeasibility in a larger scale; (3) processing the data too slowly to meet the objectives. To address these challenges, we propose sketching techniques as a tool to build more efficient networked systems. Sketching algorithms aim to process the data with one or several passes in an online, streaming fashion (e.g., a stream of network packets), and compute highly accurate results. With sketching, we only maintain a compact summary of the entire data and provide theoretical guarantees on error bounds. This dissertation argues for a sketching based design for large-scale networked systems, and demonstrates the benefits in three application contexts: (i) Network monitoring: we build generic monitoring frameworks that support a range of applications on both software and hardware with universal sketches. (ii) Graph pattern mining: we develop a swift, approximate graph pattern miner that scales to very large graphs by leveraging graph sketching techniques. (iii) Halo finding in N-body simulations: we design scalable halo finders on CPU and GPU by leveraging sketch-based heavy hitter algorithms

Similar works

This paper was published in JScholarship.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.