Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Transit times and mean ages for nonautonomous and autonomous compartmental systems

Abstract

We develop a theory for transit times and mean ages for nonautonomous compartmental systems. Using the McKendrick–von Förster equation, we show that the mean ages of mass in a compartmental system satisfy a linear nonautonomous ordinary differential equation that is exponentially stable. We then define a nonautonomous version of transit time as the mean age of mass leaving the compartmental system at a particular time and show that our nonautonomous theory generalises the autonomous case. We apply these results to study a nine-dimensional nonautonomous compartmental system modeling the terrestrial carbon cycle, which is a modification of the Carnegie–Ames–Stanford approach model, and we demonstrate that the nonautonomous versions of transit time and mean age differ significantly from the autonomous quantities when calculated for that model

Similar works

This paper was published in KU ScholarWorks.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.