Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Mapping of Ice Sheet Deep Layers and Fast Outlet Glaciers with Multi-Channel-High-Sensitivity Radar

Abstract

This dissertation discusses the waveform design, the development of SAR and clutter reduction algorithms for MCRDS radars that are developed at CReSIS to map the ice-sheet bed, deep internal layers and fast-flowing outlet glaciers. It is verified with survey data that the sidelobe level of the designed tapered linear chirp waveform is lower than -60dB for reliable detection of deep ice layers close to the bed. The SAR processing is implemented in f-k domain with motion compensation. Very weak echoes from the deepest parts of Jakobshavn channel are detected for the first time using large synthetic aperture length. A beam-spaced clutter-reduction algorithm is developed to reduce the distributed across-track ice clutter encountered in sounding fast outlet glaciers by estimating the clutter power as a function of depth. On average this method is able to reduce ice clutter by 10dB over Hanning weighting with the MCRDS radar's multi-channel data

Similar works

This paper was published in KU ScholarWorks.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.