Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Formalising and analysing the control software of the Compact Muon Solenoid Experiment at the Large Hadron Collider

Abstract

The control software of the CERN Compact Muon Solenoid experiment contains over 27 500 finite state machines. These state machines are organised hierarchically: commands are sent down the hierarchy and state changes are sent upwards. The sheer size of the system makes it virtually impossible to fully understand the details of its behaviour at the macro level. This is fuelled by unclarities that already exist at the micro level. We have solved the latter problem by formally describing the finite state machines in the mCRL2 process algebra. The translation has been implemented using the ASF+SDF meta-environment, and its correctness was assessed by means of simulations and visualisations of individual finite state machines and through formal verification of subsystems of the control software. Based on the formalised semantics of the finite state machines, we have developed dedicated tooling for checking properties that can be verified on finite state machines in isolation. Keywords: Case study; Process algebra; SML; Bounded model checking; Model transformation

Similar works

Full text

thumbnail-image

Repository TU/e

redirect
Last time updated on 15/02/2017

This paper was published in Repository TU/e.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.