Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Characterization of model-based detectors for CPS sensor faults/attacks

Abstract

A vector-valued model-based cumulative sum (CUSUM) procedure is proposed for identifying faulty/falsified sensor measurements. First, given the system dynamics, we derive tools for tuning the CUSUM procedure in the fault/attack free case to fulfill a desired detection performance (in terms of false alarm rate). We use the widely-used chi-squared fault/attack detection procedure as a benchmark to compare the performance of the CUSUM. In particular, we characterize the state degradation that a class of attacks can induce to the system while enforcing that the detectors (CUSUM and chi-squared) do not raise alarms. In doing so, we find the upper bound of state degradation that is possible by an undetected attacker. We quantify the advantage of using a dynamic detector (CUSUM), which leverages the history of the state, over a static detector (chi-squared) which uses a single measurement at a time. Simulations of a chemical reactor with heat exchanger are presented to illustrate the performance of our tools

Similar works

Full text

thumbnail-image

Repository TU/e

redirect
Last time updated on 01/04/2020

This paper was published in Repository TU/e.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.