Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

LBP-based periocular recognition on challenging face datasets

Abstract

This work develops a novel face-based matcher composed of a multi-resolution hierarchy of patch-based feature descriptors for periocular recognition - recognition based on the soft tissue surrounding the eye orbit. The novel patch-based framework for periocular recognition is compared against other feature descriptors and a commercial full-face recognition system against a set of four uniquely challenging face corpora. The framework, hierarchical three-patch local binary pattern, is compared against the three-patch local binary pattern and the uniform local binary pattern on the soft tissue area around the eye orbit. Each challenge set was chosen for its particular non-ideal face representations that may be summarized as matching against pose, illumination, expression, aging, and occlusions. The MORPH corpora consists of two mug shot datasets labeled Album 1 and Album 2. The Album 1 corpus is the more challenging of the two due to its incorporation of print photographs (legacy) captured with a variety of cameras from the late 1960s to 1990s. The second challenge dataset is the FRGC still image set. Corpus three, Georgia Tech face database, is a small corpus but one that contains faces under pose, illumination, expression, and eye region occlusions. The final challenge dataset chosen is the Notre Dame Twins database, which is comprised of 100 sets of identical twins and 1 set of triplets. The proposed framework reports top periocular performance against each dataset, as measured by rank-1 accuracy: (1) MORPH Album 1, 33.2%; (2) FRGC, 97.51%; (3) Georgia Tech, 92.4%; and (4) Notre Dame Twins, 98.03%. Furthermore, this work shows that the proposed periocular matcher (using only a small section of the face, about the eyes) compares favorably to a commercial full-face matcher

Similar works

Full text

thumbnail-image

The University of North Carolina at Greensboro

redirect
Last time updated on 24/11/2020

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.