Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Minimum Dissipation Principle in Nonlinear Transport

Abstract

We extend Onsager’s minimum dissipation principle to stationary states that are only subject to local equilibrium constraints, even when the transport coefficients depend on the thermodynamic forces. Crucial to this generalization is a decomposition of the thermodynamic forces into those that are held fixed by the boundary conditions and the subspace that is orthogonal with respect to the metric defined by the transport coefficients. We are then able to apply Onsager and Machlup’s proof to the second set of forces. As an example, we consider two-dimensional nonlinear diffusion coupled to two reservoirs at different temperatures. Our extension differs from that of Bertini et al. in that we assume microscopic irreversibility, and we allow a nonlinear dependence of the fluxes on the forces

Similar works

Full text

thumbnail-image

Multidisciplinary Digital Publishing Institute

redirect
Last time updated on 20/10/2022

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.