Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

An Unsupervised Learning Technique to Optimize Radio Maps for Indoor Localization

Abstract

A major burden of signal strength-based fingerprinting for indoor positioning is the generation and maintenance of a radio map, also known as a fingerprint database. Model-based radio maps are generated much faster than measurement-based radio maps but are generally not accurate enough. This work proposes a method to automatically construct and optimize a model-based radio map. The method is based on unsupervised learning, where random walks, for which the ground truth locations are unknown, serve as input for the optimization, along with a floor plan and a location tracking algorithm. No measurement campaign or site survey, which are labor-intensive and time-consuming, or inertial sensor measurements, which are often not available and consume additional power, are needed for this approach. Experiments in a large office building, covering over 1100 m2, resulted in median accuracies of up to 2.07 m, or a relative improvement of 28.6% with only 15 min of unlabeled training data

Similar works

Full text

thumbnail-image

Multidisciplinary Digital Publishing Institute

redirect
Last time updated on 20/10/2022

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.