Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Mixed Convection of Silica–Molybdenum Disulphide/Water Hybrid Nanoliquid over a Rough Sphere

Abstract

A steady combined convective motion over a rough sphere with hybrid nanoparticles is analyzed. We have considered silica (SiO2) and molybdenum disulphide (MoS2) nanoadditives which are added in H2O to form MoS2–SiO2/H2O hybrid nanoliquid. The partial differential equations describing the boundary layer flow characteristics are reduced into non-dimensional form with appropriate non-similar reduction. It should be noted that the governing equations have been written using the conservation laws of mass, momentum and energy. These considered equations allow simulating the analyzed phenomenon using numerical techniques. Implicit finite difference approximation and technique of Quasilinearization are utilized to work out the dimensionless control equations. The influence of various physical characteristics included in this challenge, such as the velocity fields and temperature patterns, is investigated. The study of border gradients is performed, which deals with the skin friction and energy transport strength. The plots of computational outcomes are considered, which ascertain that velocity distribution reduces, whilst coefficient of friction at the surface, energy transport strength and temperature distribution augment for enhancing values of hybrid nanofluid. For enhancing magnitude of combined convection parameter, dimensionless velocity distribution, surface drag coefficient and energy transport strength enhance, while temperature distribution diminishes. High impact of hybrid nanofluid on energy transport strength and the surface friction compared to the host liquid and mono nanofluid in presence/absence of surface roughness is shown. Velocity distribution enhances for rising values of velocity ratio parameter. Enhancing values of frequency parameter rise the friction at the surface and energy transport strength. It is also examined that the hybrid nanofluid has a maximum temperature for the blade-shaped nanoparticles and has a low temperature for the spherical-shaped nanoparticles

Similar works

Full text

thumbnail-image

Multidisciplinary Digital Publishing Institute

redirect
Last time updated on 21/10/2022

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.