Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Optical Constants of Silicon Carbide for Astrophysical Applications. II. Extending Optical Functions from Infrared to Ultraviolet Using Single-Crystal Absorption Spectra

Abstract

Laboratory measurements of unpolarized and polarized absorption spectra of various samples and crystal structures of silicon carbide (SiC) are presented from 1200-35000 cm−1 (λ ∼ 8-0.28 μm) and used to improve the accuracy of optical functions (n and k) from the infrared (IR) to the ultraviolet (UV). Comparison with previous λ ∼ 6-20 μm thin-film spectra constrains the thickness of the films and verifies that recent IR reflectivity data provide correct values for k in the IR region. We extract n and k needed for radiative transfer models using a new “difference method,” which utilizes transmission spectra measured from two SiC single-crystals with different thicknesses. This method is ideal for near-IR to visible regions where absorbance and reflectance are low and can be applied to any material. Comparing our results with previous UV measurements of SiC, we distinguish between chemical and structural effects at high frequency. We find that for all spectral regions, 3C (β-SiC) and the E⊥ c polarization of 6H (a type of α-SiC) have almost identical optical functions that can be substituted for each other in modeling astronomical environments. Optical functions for E c of 6H SiC have peaks shifted to lower frequency, permitting identification of this structure below λ ∼ 4 μm. The onset of strong UV absorption for pure SiC occurs near 0.2 μm, but the presence of impurities redshifts the rise to 0.33 μm. Optical functions are similarly impacted. Such large differences in spectral characteristics due to structural and chemical effects should be observable and provide a means to distinguish chemical variation of SiC dust in space.This work was supported by NASA APRA04-000-0041 and NSF-AST 0607418 and NSF-AST 067341. K.M.P. is supported by an appointment to the NASA Postdoctoral Program, administered by Oak Ridge Associated Universities. A.F.G. acknowledges support from NSF/EAR, DOE/BES, DOE/NNSA (CDAC), and theW.M. Keck Foundation

Similar works

This paper was published in University of Missouri: MOspace.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.