Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

An adaptation of K-means-type algorithms to the Grassmann manifold

Abstract

2019 Spring.Includes bibliographical references.The Grassmann manifold provides a robust framework for analysis of high-dimensional data through the use of subspaces. Treating data as subspaces allows for separability between data classes that is not otherwise achieved in Euclidean space, particularly with the use of the smallest principal angle pseudometric. Clustering algorithms focus on identifying similarities within data and highlighting the underlying structure. To exploit the properties of the Grassmannian for unsupervised data analysis, two variations of the popular K-means algorithm are adapted to perform clustering directly on the manifold. We provide the theoretical foundations needed for computations on the Grassmann manifold and detailed derivations of the key equations. Both algorithms are then thoroughly tested on toy data and two benchmark data sets from machine learning: the MNIST handwritten digit database and the AVIRIS Indian Pines hyperspectral data. Performance of algorithms is tested on manifolds of varying dimension. Unsupervised classification results on the benchmark data are compared to those currently found in the literature

Similar works

Full text

thumbnail-image

Mountain Scholar (Digital Collections of Colorado and Wyoming)

redirect
Last time updated on 02/12/2020

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.